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Abstract

Several recently proposed semi-automatic and fully-automatic coarse-graining schemes for polymer simulations are discussed. All these

techniques derive effective potentials for multi-atom units or super-atoms from atomistic simulations. These include techniques relying on

single chain simulations in vacuum and self-consistent optimizations from the melt like the simplex method and the inverted Boltzmann

method. The focus is on matching the polymer structure on different scales. Several ways to obtain a time-scale for dynamic mapping are

discussed additionally. Finally, similarities to other simulation areas where automatic optimization are applied as well are pointed out.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Polymers with their large variety of important length

scales pose a formidable challenge for computer simu-

lations. Over the last decades various techniques to handle

the problems on the different length scales separately have

been developed. Especially simulations in full atomistic

detail [1–5], and with one interaction center for each

monomer [6–8] or for each polymer [9] have gained a lot of

attention.

More recently, it has been realized that a connection

between the arising length and time scales are necessary. To

this end, a number of coarse-graining techniques have been

devised [10–20] where simulations on more than one length

scale are combined in order to get a better understanding of

the system as a whole. It has even been proposed that

simulations on both scales can be performed in one single

simulation box [11,20]. The purpose of this contribution is

to critically analyze several of the most recent automatic

mapping schemes for coarse-graining in polymer research.

This comprises a technique combining atomistic single

chain Monte Carlo with molecular dynamics on the meso-

scale [10], the automatic simplex mapping technique [21,

22], and a number of physically inspired techniques [13,17,

18]. All these techniques have been implemented in

automatized schemes which in principle allow to obtain a

coarse-grained polymer model on the meso-scale without

human intervention if the atomistic simulations have been

performed. Based on the atomistic simulations a target

function has to be defined and optimized against in the

meso-scale simulation.

Techniques which either rely on the use of lattice

simulations or which cannot be implemented in an

automatic manner have been left out on purpose in this

contribution. The reader is referred to other reviews

including such techniques [12,16,19].

There are many reasons for applying coarse-graining

schemes for polymer simulations. The overall structure of a

polymer in melt or solution often shall be reproduced

faithfully except for the local atomistic detail. This

improves the speed and memory requirements of the

simulation and by that allow larger simulations or longer

chains. Simulations of long chains are necessary but the

experimentally relevant chain lengths cannot be reached by

atomistically detailed simulations. Even if computer speed

increases in the future as it did over the last decades, we are

still decades away from doing simulations of chains with

thousands monomers in a fully atomistically detailed

simulated melt. The relevant relaxation times increase by

an exponent of N3:4 with chain length N for large chains

[23]. And, even if it were possible to perform such

simulations their usefulness would be questionable as the

vast amount of data would be very difficult to analyze as the
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interesting observables would be difficult to filter out. A lot

of questions on large scales have been answered by simple

bead-spring models. These models are able to get interesting

scaling behaviors and by this a lot of basic understanding. In

order to get compare directly to experiments, however, one

needs a meso-scale model which does not represent

generically ‘a polymer’ but has an identity of a specific

polymer. To this end, a combination of atomistic and meso-

scale models which can be mapped uniquely onto each other

is necessary. In this case issues appearing on different length

scales can be answered consistently.

The remainder of this article is organized as follows.

Section 2 deals with the various possibilities of static

mapping, Section 3 with dynamic mapping which has

gained much less attention and in the end conclusions will

be drawn and connections to other automatic optimization

techniques in molecular simulation will be shown.

2. Static mapping

2.1. The concept of super-atoms

The methods to be discussed here deal all with two length

scales. Most often these are the atomistic scale and the

meso-scale. However, for the methods to work this is not

necessary. For the remainder of this contribution an

atomistic simulation is defined to be a simulation where

all atoms are present or only the hydrogens are neglected.

The latter is often called a united atom model. A meso-scale

model is defined to be a model where a group of atoms is

replaced by one interaction center. This group is typically of

the size of a monomer. We call such a unit a super-atom.

Thus, a part of a polymer chain comprising a few atoms

(typically 10–30) will be represented by one interaction

center. The super-atoms are the only interaction centers in

the meso-scale simulation. The interaction between super-

atoms has to implicitly carry the information of the

interactions between the atoms in their local geometrical

arrangements imposed by the bonding. Fig. 1 shows some

typical examples of super atom representation of polymers.

The choice of super-atoms is arbitrary in principal. But

there are a number of criteria which have been established.

It is very effective if the distance between super-atoms along

the chain is relatively rigidly defined as in that case the

bonding potential is just a harmonic bond [18]. Fig. 2 shows

this using cis-1-4-poly-isoprene. The obvious choice of the

center of mass of the double bond leads to a doubly peaked

bond distribution whereas the choice of the super-atom

center being placed between atomistic monomers results in

a clear single peak. Such a distribution can easily be

modeled by a single Gaussian which is produced by a

harmonic bond potential The height to width ratio of the

Gaussian peak defines the harmonic bond strength. The

underlying reason for the two strongly different distributions

is that the double bond is very rigid and does not allow any

Fig. 1. Illustration of super-atoms representing polymers. The hydrogens

are left out for clarity. (a) Cis-polyisoprene physical monomer, center of the

super atom in the middle of the double bond; (b) polyisoprene

pseudomonomer, center of the super atom between two physical

monomers; (c) polystyrene, super-atom center on the single bond in the

monomer; (d) polystyrene, super-atom center in the center of the ring. All

the super-atom centers are marked by black dots.

Fig. 2. Left: bond length distributions arising from the possible choices of

super-atoms in cis-polyisoprene of Fig. 1. The single peaked solid line

corresponds to the center of the super-atom on the single bond between

atomistic monomers (Fig. 1(b)), the dashed line to the super-atom in the

center of the double bond (Fig. 1(a)). All histograms are normalized that the

integral equals 1. Right: bond potentials gained by direct Boltzmann

inversion of the distributions of the left hand side (same line styles). The

thin broken line is a harmonic fit to the pseudomonomer potential. Curves

were locally smoothed for differentiability.
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torsional degrees of freedom whereas the single bonds can

easily flip from one torsional state to another. As the centers

of mass of the double bond are effectively connected by

single bonds and vice versa the double bonds lead to the

sharply peaked distribution and the different torsion states of

the single bonds lead to more than one peak making it more

difficult to model the distribution by a simple bond

potential. Additionally the multiplicity of peaks would

lead to an interdependence of bond and angle potentials.

Moreover, it is advantageous to have the space occupied

by the atoms represented in one super-atom being spherical

in order to avoid anisotropic potentials. Almost all schemes

use a spherical potential to model the space occupied by the

super-atom [10,11,13,18,21]. This occupied space can in the

first approximation be viewed as the elliptic hull of

the atoms. Generalizations to anisotropic potentials have

been attempted [24]. The offset by the much higher

complexity of the simulation can in most cases not been

overcome by the only slightly higher accuracy.

If a single spherical potential is not satisfactory as, e.g.

for diphenylcarbonate [21] or polycarbonates [10] it is more

economical to use more than one spherical super-atom per

monomer than a non-spherical one. Abrams et al. showed

that in the case of polycarbonate one needs 5 spherical

interaction center per atomistic monomer in order to get a

good representation of the underlying polymer [25] whereas

3 anisotropic beads have been used by Hahn et al. [24].

2.2. Single chain distribution potentials

Tschöp et al. proposed a technique for mapping the

structure of a polymer to a model containing much less

interaction sites [10]. The model starts out with a detailed

quantum chemical calculation of short segments of the

polymer chain in order to obtain an accurate torsion

potential. This quantum chemically determined distri-

butions are then used to perform single chain Monte Carlo

simulations in vacuum. The corresponding distributions of

super-atoms are recorded. The recorded distributions are

bond lengths, bond angles and torsions. In order to

accurately gain a potential out of these distributions they

have to be weighted by the corresponding Jacobians. For

example, for the bond lengths the Jacobian is just r2 which

stems from the transformation from spherical to Cartesian

coordinates. Then they are Boltzmann-inverted to obtain

intra-molecular potentials between super atoms, i.e. a

potential is derived from the distribution. Formally, the

Boltzmann inversion leads to a free energy difference but in

vacuum this equals the potential energy. This difference will

become crucial in the following sections.

VðzÞ ¼ 2kBT ln pðzÞ ð1Þ

here, z can stand for bond lengths, bond angles and torsions

alike. The distribution pðzÞ is taken after the Jacobian

correction. In this way, a complete set of intra-molecular

potentials has been obtained. It is noteworthy that this

potential is completely numerical. In order to be able to

calculate a derivative to obtain the forces local splines or

similar techniques can be used to smooth it. Cross

dependencies of the different potentials (e.g. bond and

angle) are neglected for computational reasons. As

explained above they can be eliminated by the proper

choice of mapping points.

In the original work, this elaborate intra-molecular

potential was combined with a simple repulsive Lennard–

Jones or WCA potential [26] to reproduce the density.

VWCA ¼ 4e
s

r
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2
s

r

� �6
" #

r ,
ffiffi
6

2s
p

ð2Þ

here, s is the interaction radius (size) of the monomer, e is

the interaction strength, and r is the distance between

corresponding monomers.

This method was successful in calculating the structure

factor of polycarbonates [27]. A similar approach has been

applied to a simple hydrocarbon chain where the super-atom

center is taken as the center of mass of n monomers [15]. In

this case, the starting point was an atomistic molecular

dynamics simulation. For the non-bonded potential also a

potential of mean force approach has been taken. So the

radial distribution function of two dilute polymers is used to

determine the non-bonded potential. For small molecules,

this can be used directly [11]. For polymers at small

distances, the connectivity leads to a severe restriction on

the possible conformations so a restricted pair distribution

function taking connectivity into account has to be used.

This approach does not separate the simulations of the

atomistic and the coarse-grained models and bases on the

reversible work theorem [11,20]

e2bWðrÞ ¼

X
i

e2bUiðrÞ

X
i

e2bUið1Þ
ð3Þ

where W is the reversible work and this can be used as a

potential to obtain the same structure as the atomistic model.

The appearance of the inverse temperature b ¼ ðkBTÞ21

scaled by the Boltzmann factor kB makes it clear that this is

valid only at the specified temperature. The potential U is

the full potential energy of the system with the two sites

under focus fixed at a distance r apart. Fully detailed and

mesoscopically modeled particles coexist in the very same

simulation. The detailed particles carry two potentials as

they interact with the non-detailed particles as if they were

non-detailed particles (cf. Fig. 3). Actually, the two types of

particles can even be bonded to each other in order to get the

correct potential along a polymer chain as pointed out in

Ref. [15] where also the automatic implementation was

shown.
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2.3. Simplex

Recently, more direct ways of linking atomistic melt

simulations and meso-scale melt simulations have been

developed. The idea is to systematically and self-consist-

ently reproduce structure and thermodynamics of the

atomistic simulation on the meso-scale. As this is an

optimization problem mathematical optimization tech-

niques can be applied directly. One of the most robust

although not very efficient multi-dimensional optimizers is

the simplex [28]. It has the advantage that it does not rely on

any derivatives, as they are very difficult to obtain in the

simulation. The simplex was first applied to optimizing

atomistic simulation models to experimental data [29]. The

idea is to view the experimental observables, e.g. the density

r; as a function f of the parameters of the simulation model

Bi; e.g. the Lennard–Jones parameters

r ¼ f ð{Bi}Þ ð4Þ

this function in multi-dimensional space is now optimized

by the simplex technique. In order for the simplex to be

applicable a single valued function with a minimum at the

target has to be defined. This is easily accomplished by the

sum of square deviations from target values

f ¼
X

i

½Að{e i}; {si}Þ2 Atarget�
2 ð5Þ

here, A represents any thermodynamic observable to be

reproduced in this scheme with a target value Atarget;

{e i}; {si} are the full set of Lennard–Jones parameters.

Every function evaluation includes a complete equilibration

sequence for the given parameters, a production run and the

analysis. In order to ensure equilibration, it was made

certain that no drift in the observables remained and an

automatic detection of equilibration was developed [29].

Very recently, it has been shown that the derivatives of the

observables with respect to the parameters of the simulation

model can also be calculated and therefore more efficient

optimizers can be used [30].

In the context of polymer mapping, the target functions

are not experimental observables but the structure of the

system. So radial distribution functions are the aim of the

technique. To this end one views any point of the radial

distribution function gðRÞ in the interval ½Ri;Ri þ 1� as a

different observable which is to be reproduced. The function

to be minimized is the integral over the squared difference in

radial distribution functions [21]. If necessary, a weighting

function can additionally be introduced [18,21]. An

exponential decay is a good choice as the local structure

around the first peak in the rdf is most crucial and most

difficult to reproduce.

f ¼
ð

drwðrÞ½gðrÞ2 gtargetðrÞ�
2 ð6Þ

A drawback of the simplex technique is that it cannot use

numerical potentials as a relatively small set of parameters

defining the parameter space is needed. The limit is

typically 4–6 independent parameters Bi: An increase in

dimensionality of this space increases the need for

computational resources tremendously. A good choice

for such parameters are a Lennard–Jones like expansion

[21,22]

VðRÞ ¼
X

i

Bi

ri
ð7Þ

where i has been used to span the even numbers from 6 to

12. This technique has been successful to reproduce

monomers of polyisoprene [21]. The structure of small

molecules like diphenylcarbonate could be described by this

technique as well [21]. The application to polymers showed

some deficiencies [22] which led to the development of

better suited algorithms.

2.4. Physically inspired optimization methods

The iterative Boltzmann method was developed in order

to circumvent the problems encountered with the simplex

technique [17,18]. It is an optimization aiming at the

structure of an atomistic simulation. It showed its strength

by being able to reproduce the structure of trans-1,4-

polyisoprene where the simplex technique failed [17,18].

The idea is to use a physically inspired optimization

technique to speed up the convergence and at the same time

get rid of the limitation on the number of parameters as

imposed by the simplex technique.

As discussed above, in the limit of infinite dilution one

could use the potential of mean force gained by Boltzmann

inverting the pair distribution function to get an interaction

potential between monomers, this would be the non-bonded

generalization of the above described single chain approach.

Fig. 3. The scheme of McCoy et al. uses different degrees of detail in the

very same simulation. The figure shows two particles which exist on both

scales. These interact by their atomistic potentials. The atomistically

detailed interact with the purely mesoscopic by the mesoscopic potential as

do the purely mesoscopic among themselves. Some of the particles are

bonded to form a polymer.

R. Faller / Polymer 45 (2004) 3869–38763872



Similar ideas have been used to calculate potentials of mean

force (PMF) of large particles like colloids in matrices of

small particles where the small particles play only the role

of a homogeneous background [31,32]. In concentrated

solutions or melts, the structure is defined by an interplay of

the PMF and the packing of atoms or monomers. It has been

shown that simple packing arguments can account for the

largest part of local orientation correlations in dense melts

[33]. Thus, a direct calculation of the potential of mean

force is not correct. Still the use of the PMF idea as a way to

iteratively approach the correct potential is possible and is

used by the iterative Boltzmann method. A melt or solution

of polymers is simulated in atomistic detail to obtain a pair

distribution function. For every iteration a one-to-one

correspondence between the effects at a distance r0 and

the potential Vðr0Þ (or force 2drVðrÞlr¼r0
) at the same

distance r is assumed. However, this is not a limitation as

the iterative procedure takes care of any other dependencies.

It becomes immediately clear from this approach that the

resulting potential is numerical, as every single bin of the

potential as a function of distance is optimized indepen-

dently. It is possible and advantageous to enforce continuity

by using weighted local averages. This is important if the

function to be optimized against is relatively noisy,

however, the correct way to lower the noise level is a

longer atomistic simulation which of course can be

prohibitive. Fig. 4 shows the different stages of a iterative

Boltzmann procedure. In the beginning, a starting potential

Vstart has to be guessed. Either we take the result from a

similar problem or we start with the potential of mean force

by Boltzmann inversion of the target function. After this

initial potential is simulated, the radial distribution function

is obtained and the difference between this function and the

target is determined. This leads to a correction potential

which is the difference in free energy

DVðrÞ ¼ 2kBT ln
gðrÞ

gtargetðrÞ

 !
ð8Þ

this correction potential is added and the iteration resumes

until the difference in g is deemed satisfactory. For

polyisoprene 4 iterations were necessary [17]. The final

result is shown at the bottom of Fig. 4.

Two alternatives to the iterative Boltzmann technique

which also rely on a physically inspired optimization of the

system have been proposed by Akkermans [13,14]. The

degrees of freedom of the polymer under study are separated

into degrees of freedom of ‘blobs’ and the ‘bath’. The blobs

play the role of the super-atoms, the bath are all other

degrees of freedom which have to be integrated out. Only

the super-atoms are taken into account. The target radial

distribution function is expanded in a basis set with the pre-

factors left for optimization

gtarget ¼
X

i

liuiðrÞ ð9Þ

The set of parameters l can now be viewed as dynamical

parameters and assigned a virtual mass mðlÞ and a velocity.

So, one takes the route of an extended ensemble which is

well known in molecular dynamics of constant pressure and

temperature [34–36]. A Lagrangian including the l

parameters is used and the simulation proceeds using this

extended Lagrangian

L ¼ Kð~VÞ þ Klð~vl 2 Uð~R;lÞ2FlðlÞ ð10Þ

where the K stands for the kinetic energies and U and F are

the respective potentials. Akkermans et al. showed the

feasibility of this technique by re-optimizing a Lennard–

Jones potential. As the dynamics of the l parameters turns

Fig. 4. Top: schematic explanation of the iterative Boltzmann procedure.

On the lower left hand side (step 2) different stages of the potential are

shown, on the upper right hand side (step 3) the corresponding radial

distribution functions are depicted. Note that these sketches are for

illustrative purposes only in order to emphasize the influence of the

iteration. Final radial distribution functions and potentials for polyisoprene

[17,18] are shown in the bottom part of the figure. The target function (solid

line) and the one gained by the iterative Boltzmann method (marked IBM-

optimized, dashed line) are indistinguishable. For comparison a simplex

optimized structure (open circles) is shown. The resulting potentials are in

the lower part of that subfigure.
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out to be problematic the same approach without the

velocities can been used in a Monte Carlo procedure.

A caveat is in order here. As all the techniques described

up to now only aim at the structure of the polymeric system

it is not guaranteed that the thermodynamic state is correctly

described. This has been pointed out by a number of

researchers [13,17,37]. In order to avoid such problems, an

inclusion of thermodynamic properties in the optimization

scheme is necessary. For the pressure in the case of the

inverted Boltzmann technique such a generalization is

possible and works as follows [17]. After optimizing the

structure, an additional pressure correction (pc) potential of

the form

DVpcðrÞ ¼ Apc 1 2
r

rcut

� �
ð11Þ

is added, where A is negative if the pressure is too high and

positive if it is too low. The rationale behind this choice is to

have a constant force in addition to the force from the

structural potential which leads to a constant shift in

pressure. With such an additional potential the radial

distribution function does not deteriorate strongly and a

re-optimization is possible. Reith et al. showed that indeed

this pressure correction solved their initial problem of an

unphysically high pressure [17].

3. Dynamic mapping

Simulations in atomistic detail regularly utilize a time-

step of 1 femtosecond. This time-step has to be about an

order of magnitude shorter than the fastest characteristic

time of the system. As customarily the bond lengths are

fixed using techniques like Shake [38,39] or Rattle [35,40]

the fastest time-scales in atomistic molecular dynamics are

bond angle vibrations on the order of tens of femtoseconds.

With a reasonable use of computer resources one can then

reach into the nano-second time-range. This is long enough

to compare to segmental dynamics in NMR experiments

[5,41] but not long enough to compare to large time-scale

experiments.

The techniques to map the statics of polymers which

have been described above lead inherently to larger time-

scales as the fastest inherent degrees of freedom are now

motions of super-atoms of the size of monomers. If dynamic

investigations are desired one has to find a correct mapping

of the time-scales of the atomistic simulation to the meso-

scale. Otherwise dynamic experimental comparisons are

impossible.

3.1. Mapping by chain diffusion

An obvious candidate for calibrating the time-scale is the

chain diffusion coefficient. At large enough times any

polymer chain in a melt will end up in diffusive motion as

soon as all internal degrees of freedom are relaxed. This

diffusion can be used to determine the time-scale as long as

an independent mapping of the length scale is achieved. The

static mapping determines the length scale; an obvious

choice is the size of the monomer or the distance between

super-atoms along the chain to obtain a length scale for the

coarse-grained simulation [42]. If both simulations the

atomistic and the coarse grained can be fully equilibrated in

the sense that free diffusion of the whole chain is observed,

the two diffusion coefficients can be equated and the time-

scale is fixed. In most cases, a full free diffusion of the

atomistic chain cannot be reached in reasonable computer

time. This is especially the case when the coarse-grained

simulation should be used as a means to efficiently

equilibrate the structure from which atomistic simulations

will be started.

Nonetheless this technique can be successful. In the case

of 10-mers of polyisoprene at 413 K a dynamic mapping

between a fully atomistic and a very simple coarse grained

model is possible [5,42]. Only chain stiffness was used to

perform the mapping. The local chain reorientation in both

simulations was the same after the time-scales had been

determined by the diffusion coefficient. However, the decay

times of the Rouse modes were not equal which showed that

the mapping by stiffness alone was too simplistic.

3.2. Mapping through segmental correlation times or Rouse

model

It is often easier to use shorter, local, time scales to map

the atomistic to the coarse-grained length scale. This allows

a mapping also if the atomistic simulation cannot be

simulated into free diffusion. Even if free diffusion can be

reached, the statistical uncertainty of large time scales is

often so large that a shorter time scale is a better choice for

the mapping. Candidates for shorter time-scales are decay

times of higher Rouse modes. Even if the Rouse model is

not a perfect description of the system under study such a

mapping remains meaningful. In that case this time still

corresponds to a well defined relaxation time of a chain

segment.

If such a chain segment consists in the extreme case of

only one monomer, we end up with the segmental relaxation

time or equivalently the reorientation on the monomer scale.

This time-scale is very useful for dynamic mapping as it can

be compared the time-scales in NMR experiments [43].

3.3. Direct mapping of the Lennard–Jones time

A completely different idea which is independent of the

atomistic simulation is the mapping of the Lennard–Jones

time to real time. If one applies the standard Lennard–Jones

units where we measure lengths in s; the particle diameter,

energies in e the depth of the Lennard–Jones potential, and

masses in m the monomer mass, naturally a timescale

appears which is conventionally called the Lennard–Jones

R. Faller / Polymer 45 (2004) 3869–38763874



time [35,36]:

t ¼ s

ffiffiffiffi
m

e

r
ð12Þ

this time-scale can be used to perform the mapping to the

real time-scale [18,44].

Using the polyisoprene models of Ref. [5] (atomistic at

T ¼ 413 K) and Ref. [17,18] (meso-scale) we get the

following differences in the center-of-mass diffusion

coefficient for a atomistic 10-mer: The Lennard–Jones

time leads to Dcom ¼ 16 £ 1026 cm2=s [18]. If we map the

diffusion coefficient directly D is obviously the atomistic

result of D ¼ 4:24 £ 1026 cm2=s: This result was actually

obtained by matching the center-of-mass motion of two

different models and fitting the large-scale motion of the

coarser model. This was necessary as even at 413 K the

simulation does not move the atomistic 10-mers into free

diffusion [5]. Recently, for cis-polyisoprene a united atom

model could be brought into free diffusion [43]. In this case,

results for 8-mers ðD ¼ 14 £ 1026 cm2=sÞ have been

reported which are close to the results for the different

trans-PI-models. This indicates that the different mappings

are not far from each other but a uncertainty of the order of

2–5 has to be taken into account. For polyisoprene, this

mapping actually gives a reasonable description of the

experimental diffusion coefficient [43].

4. Automatic optimization—in coarse graining and

elsewhere

Polymer coarse-graining is by no means the only or even

the first area of computer simulations where automatic

optimization techniques are applied. Already in the 70s,

Torrie and Valleau [45,46] proposed a Monte Carlo

technique to simplify simulations in complex energy

landscapes which can easily be implemented fully auto-

matically [47–49]. This so-called umbrella sampling bases

on the idea that any bias in a Monte Carlo simulation can be

used as long as it is taken into account in the analysis. For

sampling reasons a uniform coverage of the interesting

energy area is of advantage as in that case the system does

not get trapped in any configuration but samples the whole

configuration space readily. Umbrella sampling has been

recently combined with parallel tempering to get a fully

automatic multicanonical parallel tempering scheme [50].

An idea similar in spirit to umbrella sampling is density of

states Monte Carlo which even in its very first implemen-

tation [51,52] was a completely automatic procedure. It

abandons the detailed balance criterion of Monte Carlo in its

early stages of sampling in order to get a better automatic

optimization. This technique has since been generalized and

improved in a number of ways [32,53–58]. All have in

common that they aim at an automatic calculation of the free

energy and in that sense the iterative Boltzmann method

discussed above is only a special case of this much broader

class of techniques. It may be worthwhile to think about

method transfer between the Monte Carlo calculations of the

partition function as aimed by umbrella sampling or density

of states Monte Carlo and polymer coarse graining.

Conclusively, one can say that the recent efforts in

automatic polymer coarse-graining have led to a number of

very efficient and systematic techniques to map atomistic

models onto meso-scale models. Especially, the thermo-

dynamically inspired iterative Boltzmann technique is fast

and reliable for a number of systems. The main drawback is

still the dependence on the single state point. In the

transition from the atomistic to the coarse-grained scale, we

gain a lot of efficiency but loose the generality of the

atomistic model as the coarse-grained model is optimized to

the atomistic simulation at a defined state point. Especially,

in an effort to generalize the coarse graining to polymer

mixtures this problem becomes apparent [59].

The state of the art in dynamic mapping is much less

clear than the structural optimization. As the optimized

force-fields up to now aim exclusively at the structural or

thermodynamic properties, the dynamic mapping is an ad

hoc step which may or may not be successful. This is

especially true if solutions are to be mapped as the idea of

coarse-graining is to get rid of the solvent. However, the

solvent has a marked effect on the dynamics which in the

coarser simulations without solvent is not present. To

overcome this problem and include the dynamic effects of

the solvent without explicit solvent lattice-Boltzmann

simulations may be the way to go [60]. In the case of melt

simulations, the solvent effects are not the problem but the

resulting force-fields are up to now not able to get all the

characteristic times correct at the same time so that a lot of

work remains to be done.
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